If it's not what You are looking for type in the equation solver your own equation and let us solve it.
59-162x^2=0
a = -162; b = 0; c = +59;
Δ = b2-4ac
Δ = 02-4·(-162)·59
Δ = 38232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{38232}=\sqrt{324*118}=\sqrt{324}*\sqrt{118}=18\sqrt{118}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{118}}{2*-162}=\frac{0-18\sqrt{118}}{-324} =-\frac{18\sqrt{118}}{-324} =-\frac{\sqrt{118}}{-18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{118}}{2*-162}=\frac{0+18\sqrt{118}}{-324} =\frac{18\sqrt{118}}{-324} =\frac{\sqrt{118}}{-18} $
| X+y=120000 | | -3(4x-5)=2x+8 | | 5-(4x+6)=2x-20x-30 | | -9+3y-7y+17-6+2y=14-7y+8-2y-6 | | 2+15c=-8+9c | | 120x+32=54 | | 1/4(16x+24)-5=4/5(40x-20) | | 2x^2-56x-32=0 | | 20/30=x1000 | | 20-j=30 | | 7(7+2l/7)=3(9l-1/3) | | 4(10)^2x=24 | | 2(3-10t)+13+7t=9 | | x/5=7/x | | 2x-7-2x=-x-8 | | 5(-4b-7)=38-20b | | 6d-11=13.d=2 | | x-57=-10 | | x+57=2000 | | 5x-27x-9=360 | | 5x-27(x-9=360) | | x-8=237 | | 2x=3792 | | -9w+16=88 | | x+42/7=5 | | 4.5x^2+3x-180=0 | | x-65=1799 | | 6x+372+5x+281=70 | | x/(-3)+20=15 | | -w+184=62 | | 7x+4/7=15x-8 | | 51+112+x=180 |